Иммуногенность и способы ее определения. Антигены и антитела. Смотреть что такое "Иммуногенность" в других словарях

1597 0

Иммунный ответ возникает в результате воздействия чужеродного агента. Соединение, которое вызывает реакцию, относят или к антигенам, или к иммуногенам. Различие между ними заключается в их функциях. Антигеном является любой агент, способный специфически связываться с компонентами иммунного ответа, такими как рецепторы В-клеток (BCR) на В-лимфоцитах, и растворимыми антителами.

Иммуноген же представляет собой агент, способный вызывать иммунную реакцию и таким образом являться иммуногенным. Различать эти два термина необходимо, поскольку имеется много соединений, не способных вызывать иммунную реакцию и в то же время способных связываться с компонентами иммунной системы , которые были выработаны специально против них. Таким образом, все иммуногены являются антигенами, но не все антигены являются иммуногенами. Это различие становится очевидным в случае с соединениями низкой молекулярной массы, группой веществ, включающей многие лекарства и антибиотики.

Сами по себе эти соединения не способны вызвать иммунный ответ, но когда они объединяются с гораздо более крупными агентами, такими как протеины, формируется конъюгат, способный вызывать иммунный ответ, направленный против различных частей конъюгата, в том числе и его составляющую с низкой молекулярной массой.

Действующее таким образом низкомолекулярное вещество относится к гаптенам (от греч. hapto - схватывать), в то время как соединение с высокой молекулярной массой, с которым соединяется гаптен, называется носителем. Таким образом, гаптен является соединением, не способным самостоятельно вызывать иммунный ответ, но против которого иммунный ответ может быть получен путем иммунизации, если гаптен конъюгирован с носителем.

Иммунный ответ был получен против всех известных семейств биохимических соединений, таких как углеводы, липиды, протеины и нуклеиновые кислоты. Он может быть получен и к лекарствам, антибиотикам, пищевым добавкам, косметическим средствам, мелким синтетическим пептидам, но только в том случае, если они объединены с носителем. В этой главе будут обсуждаться основные свойства соединений, которые делают их антигенами и иммуногенами.

Для того чтобы обладать свойствами иммуногенности, соединение должно иметь следующие характеристики: 1) чужеродность; 2) большая молекулярная масса; 3) сложное химическое строение; 4) в большинстве случаев способность к разрушению (деградации) и взаимодействию с МНС организма-хозяина.

Чужеродность

Обычно у животных не отмечают аутоиммунных реакций. Так, если кролику, например, вводят его собственный сывороточный альбумин, он не вызовет иммунной реакции, поскольку распознается как собственный. Напротив, если сывороточный альбумин кролика вводят морской свинке, он будет распознаваться как чужеродный кроличий сывороточный альбумин и вызывать иммунный ответ.

Чтобы доказать сохранность иммунитета у кролика, у которого не наблюдалось иммунной реакции на собственный сывороточный альбумин, ему можно ввести альбумин морской свинки. У кролика с сохраненным иммунитетом будет наблюдаться иммунная реакция на сывороточный альбумин морской свинки, поскольку эта субстанция будет определяться как чужеродная. Таким образом, первым требованием к веществу, рассматриваемому как иммуногенное, является чужеродность. Чем более чужеродным является вещество, тем более оно иммуногенно.

Обычно соединения, синтезируемые в организме хозяина, не являются для него иммуногенными. Однако имеются исключения, когда у индивидуума отмечается иммунная реакция на свои собственные ткани. Это состояние называется аутоиммунитетом.

Большая молекулярная масса

Вторым необходимым свойством иммуногена является определенная минимальная молекулярная масса вещества. Обычно соединения малой молекулярной массой менее 1 000 Да (например, пенициллин, прогестерон, аспирин) не являются иммуногенными. Соединения молекулярной массой между 1000 и 6000 Да (например, инсулин, адренокортикотропный гормон) могут быть иммуногенными, а могут и не быть. Соединения молекулярной массой более 6000 Да (например, альбумин, столбнячный токсин) обычно являются иммуногенными. Итак, относительно мелкие молекулы соединений обладают низкой иммуногенностью, в то время как большие - высокой.

Сложная химическая структура

Третьим свойством, которым должно обладать соединение, чтобы быть иммуногенным, является определенный уровень физико-химической сложности. Например, простые молекулы, такие как гомополимеры аминокислот (например, полимер лизина молекулярной массой 30000 Да) редко являются хорошими иммуногенами. Аналогично, гомополимер поли-γ-D-глутаминовой кислоты (материал капсулы бациллы сибирской язвы) молекулярной массой 50000 Да не является иммуногенным.

Рис. 3.1. Уровни организационной структуры протеина. На первичную структуру указывает линейное расположение аминокислот (для чего используют однобуквенный код); также отмечается наличие внутри цепи разных дисульфидных мостиков. Вторичная структура возникает при укладывании полипептидной цепи в α-спирали и β-складки. Третичная структура, показанная в виде ленточной диаграммы, формируется путем складывания участков вторичных структур (адаптировано с разрешения Р Sun, JC Boyington, Current Protocols in Protein Science, Wiley)

Отсутствие иммуногенности, несмотря на большую молекулярную массу этих веществ, обусловлено отсутствием достаточной химической сложности. Однако при увеличении химической сложности путем присоединения к ε-аминогруппе полилизина дополнительных частей, таких как динитрофенол, или других соединений с низкой молекулярной массой, не являющихся иммуногенными, такая макромолекула становится иммуногенной.

Получаемый иммунный ответ направлен не только против спаренных соединений с низкой молекулярной массой, но и против гомополимера с высокой молекулярной массой. Обычно увеличение химической сложности соединения сопровождается увеличением его иммуногенности. Так, сополимеры некоторых аминокислот, таких как полиглутаминовой, аланиновой и лизиновой (poly-GAT), обычно обладают высокой иммуногенностью.

Поскольку многие иммуногены являются протеинами, важно понять структурные свойства этих молекул. Каждый из четырех структурных уровней белка вносит свой вклад в появление иммуногенности у молекулы. При инициации приобретенного иммунного ответа распознаются многие структурные характеристики и химические свойства соединений.

Например, антитела могут распознавать такие структурные характеристики протеина, как первичная структура (последовательность аминокислот), вторичные (структуры каркаса полипептидной цепи, такие как α-спираль или (β-складка) и третичные структуры (сформированные трехмерной конфигурацией белка, которая создается при складывании полипептидной цепи и поддерживается дисульфидными мостиками, водородными связями, гидрофобными взаимодействиями и т.д.) (рис. 3.1). Могут распознаваться и четвертичные структуры (сформированные наложением отдельных частей, если молекула состоит из более чем одной субъединицы белка) (рис. 3.2).


Рис. 3.2. Четвертичная структура белков, возникающая из связи двух или более полипептидных цепей, которые формируют полимерный белок (адаптировано с разрешения Р Sun and JC Boyington, Current Protocols in Protein Science, Wiley)

Способность разрушаться

Для антигенов, активирующих Т-клетки, способность стимулировать иммунный ответ определяется возможностью взаимодействия с молекулами МНС, экпрессированными на антигенпрезентирующих клетках (АПК) . Последние должны вначале расщепить антиген, подвергнуть его ферментной деградации (этот процесс называется процессированием антигена), после чего антигенные эпитопы (небольшие фрагменты иммуногена) могут быть представлены на поверхности АПК. После деградации и возникновения нековалентной связи с МНС эти эпитопы стимулируют активацию и расширение клона антиген-специфичных эффекторных Т-клеток.

Чувствительность протеинового антигена к ферментативной деградации во многом зависит от двух свойств: 1) он должен быть достаточно стабильным для того, чтобы попасть к месту взаимодействия В- или Т-лимфоцитов, что необходимо для развития иммунного ответа; 2) соединение должно относительно легко поддаваться частичной ферментативной деградации, которая происходит во время процессирования антигена антигенпрезентирующих клеткок.

Пептиды, состоящие из D-аминокислот, которые устойчивы к ферментативной деградации, не являются иммуногенными, в то время как их L-изомеры, чувствительные к ферментам, являются иммуногенными. Напротив, углеводы , которые не подвергаются изменениям и не презентируются, не могут активировать Т-клетки, хотя активируют В-клетки.

В целом, чтобы быть иммуногенным, вещество должно обладать всеми этими четырьмя свойствами. Оно должно быть чужеродным тому, кому введено, иметь относительно большую молекулярную массу, обладать определенной степенью химической сложности и быть способным к деградации.

Гаптены

Как указывалось ранее, вещества, называемые гаптенами, не вызывают иммунного ответа в своей первоначальной форме из-за низкой молекулярной массы и простоты химического строения. Эти соединения не иммуногенны до тех пор, пока они не соединятся с носителями, обладающими сложной химической структурой и высокой молекулярной массой. Таким образом, иммунный ответ может быть вызван тысячами химических соединений, как с высокой, так и с низкой молекулярной массой при условии, что они соединены с носителями, обладающими сложной химической структурой и высокой молекулярной массой.

Другие условия появления иммуногенности

Существует также ряд других факторов, определяющих, будет ли вещество иммуногенным. Важную роль в том, будет ли данное вещество вызывать иммунную реакцию, играет генетическая организация (генотип) иммунизируемого индивидуума. Генетический контроль иммунной реактивности осуществляется в основном генами, картированными внутри МНС. Другой решающий фактор, определяющий иммуногенность веществ, - индивидуальный репертуар В- и Т-клеток.

Реакции приобретенного иммунитета запускаются после связывания антигенных эпитопов с антигенспецифичными рецепторами на В- и Т-лимфоцитах. Если у индивидуума отсутствует определенный клон лимфоцитов, состоящий из клеток, несущих идентичный антигенспецифичный рецептор, необходимый для ответа на данный антигенный стимул, иммунного ответа на такой эпитоп не будет. И, наконец, такие важные на практике факторы, как доза и метод введения антигена, также играют роль в проявлении веществом иммуногенности.

Недостаточные дозы антигена могут не вызвать иммунный ответ в связи с тем, что они будут не способны в должной мере активировать лимфоциты или потому что данная доза делает реагирующие клетки неотвечающими. Последнее из перечисленных явлений вызывает состояние толерантности к данному антигену. Возможность индуцировать иммунный ответ определяется не только необходимостью введения порогового количества антигена, но и числом вводимых доз. Далее будет показано, что для получения сильного иммунного ответа необходимо повторно ввести антиген.

Наконец, на результат иммунизации может повлиять путь введения антигена, поскольку именно он определяет, какие органы и популяции клеток будут вовлечены в реакцию. Антигены, вводимые наиболее распространенным способом - подкожно, обычно вызывают наиболее сильный иммунный ответ. Это связано с тем, что их захват, процессирование и представление (презентация) эффекторным клеткам осуществляются клетками Лангерганса, находящимися в коже и являющимися одними из наиболее эффективных АПК. Реакции на подкожное введение антигенов проявляются в лимфатических узлах, куда происходит отток лимфы от места введения.

Антигены, введенные внутривенно, переносятся вначале в селезенку, где могут индуцировать иммунологическую неотвечаемость, или толерантность, или, если они представлены антигенпрезентирующими клетками, вызвать иммунный ответ. Антигены, поступающие через рот (гастроинтестинальный путь), вызывают локальный антительный ответ в границах собственной пластинки кишечника, но часто приводят к возникновению системной толерантности к антигену. Наконец, введение антигенов через респираторный тракт (интраназальный путь) нередко вызывает аллергические реакции.

Поскольку иммунные реакции зависят от множества межклеточных взаимодействий, на тип и выраженность иммунного ответа влияют клетки, заполняющие орган, в который антиген доставляется первоначально. Обязательные для проявления иммуногенности условия, перечисленные ранее, составляют часть тонкого механизма контроля, описанного в следующих главах, который, с одной стороны, запускает приобретенный иммунный ответ, а с другой, защищает индивидуум от реакции на вещества в тех случаях, когда такие реакции являются вредными

Р.Койко, Д.Саншайн, Э.Бенджамини

План лекции:

1. Антигены: определение, строение, основные свойства.

2. Антигены микроорганизмов.

3. Антигены человека и животных.

4. Антитела: определение, основные функции, строение.

5. Классы иммуноглобулинов, их характеристика.

6. Динамика образования антител.

Антигены (от греч. anti - против, genos - создавать; термин предложил в 1899 г. Дойч ) - вещества различного происхождения, несущие признаки генетической чужеродности и при введении в организм вызывающие развитие специфических иммунологических реакций.

Основные функции антигенов:

Индуцируют иммунологический ответ (синтез антител и запуск реакций клеточного иммунитета).

Специфически взаимодействуют с образовавшимися антителами (in vivo и in vitro).

Обеспечивают иммунологическую память - способность организма отвечать на повторное введение антигена иммунологической реакцией, характеризующейся большей силой и более быстрым развитием.

Обуславливают развитие иммунологической толерантности - отсутствие иммунного ответа на конкретный антиген при сохранении спо-собности к иммунному ответу на другие антигены.

Строение антигенов:

Антигены состоят из 2 частей :

1. Высокомолекулярный носитель (шлеппер) - высокополимерный белок, определяющий антигенность и иммуногенность антигена.

2. Детерминантные группы (эпитопы) - поверхностные структуры антигена, комплементарные активному центру антител или рецептору Т-лимфоцита и определяющие специфичность антигена. На одном носителе может быть несколько разных эпитопов, состоящих из пептидов или липополисахаридов и располагающихся в разных частях молекулы антигена. Их разнообразие достигается за счет мозаики аминокислотных или липополисахаридных остатков, располагающихся на поверхности белка.

Количество детерминантных групп или эпитопов определяет валентность антигена .

Валентность антигена - количество одинаковых эпитопов на молекуле антигена, равное числу молекул антител, которые могут к ней присоединяться.

Основные свойства антигенов:

1. Иммуногенность - способность вызывать иммунитет, невосприимчивость к инфекции (применяется для характеристики инфекционных агентов).

2. Антигенность - способность вызывать образование специфических антител (частный вариант иммуногенности).

3. Специфичность - свойство, по которому антигены различаются между собой и определяющее способность избирательно реагировать со специфическими антителами или сенсибилизированными лимфоцитами.

Иммуногенность, антигенность и специфичность зависят от многих факторов.

Факторы, определяющие антигенность:

- Чужеродность (гетерогенность) - генетически обусловленное свойство антигенов одних видов животных отличаться от антигенов других видов животных (чем дальше друг от друга в фенотипическом отношении находятся животные, тем большей антигенностью по отношению друг к другу они обладают).


- Молекулярный вес должен быть не менее 10000 дальтон, с увеличением молекулярного веса антигенность возрастает.

- Химическая природа и химическая однородность: наибольшей антигенностью обладают белки, их комплексы с липидами (липопротеиды), с углеводами (гликопротеиды), с нуклеиновыми кислотами (нуклеопротеиды), а также сложные полисахариды (при массе более 100000 D), липополисахариды; сами по себе нуклеиновые кислоты, липиды вследствие недостаточной жесткости структуры неиммуногенны.

- Жесткость структуры (помимо определенной химической природы антигены должны обладать определенной жесткостью структуры, например, денатурированные белки не обладают антигенностью).

- Растворимость (нерастворимые белки не могут находиться в коллоидной фазе и не вызывают развитие иммунных реакций).

Факторы, определяющие иммуногенность:

Свойства антигенов.

Способ введения антигена (перорально, внутрикожно, внутримышечно).

Доза антигена.

Интервал между введением.

Состояние иммунизированного макроорганизма.

Скорость разрушения антигена в организме и выведения его из организма.

Иммуногенность и антигенность могут не совпадать! Например, дизентерийная палочка обладает высокой антигенностью, но выраженного иммунитета против дизентерии не вырабатывается.

Факторы, определяющие специфичность:

Химическая природа антигенной детерминанты.

Строение антигенной детеминанты (вид и последовательность аминокислот в первичной полипептидной цепи).

Пространственная конфигурация антигенных детерминант.

Виды антигенов по строению:

1. Гаптены (неполноценные антигены) - это чистая детерминантная группа (имеют небольшую молекулярную массу, не распознаются иммунокомпетентными клетками, обладают только специфичностью, т.е. не способны вызывать образование антител, но вступают с ними в специфическую реакцию):

- простые - взаимодействуют с антителами в организме, но не способны реагировать с ними in vitro;

- сложные - взаимодействуют с антителами in vivo и in vitro.

2. Полноценные (конъюгированные) антигены - образуются при связывании гаптена с высокомолекулярным носителем, обладающим иммуногенностью.

3. Полугаптены - это неорганические радикалы (J - , Cr - , Br - , N +), связанные молекулами белка.

4. Проантигены - гаптены, способные присоединяться к белкам организма и сенсибилизировать их как аутоантигены.

5. Толерогены - антигены, способные подавлять иммунологические реакции с развитием специфической неспособности отвечать на них.

Виды антигенов по степени чужеродности:

1. Видовые антигены - антигены определенного вида организмов.

2. Групповые антигены (аллоантигены) - антигены, обусловливающие внутривидовые различия у особей одного вида, разделяющие их на группы (серогруппы у микроорганизмов, группы крови у человека).

3. Индивидуальные антигены (изоантигены) - антигены конкретного индивидуума.

4. Гетерогенные (перекрестнореагирующие, ксеноантигены) антигены - антигены, общие для организмов разных видов, далеко отстоящих друг от друга:

- антигенная мимикрия - длительное отсутствие иммунологической реакции на антигены из-за схожести с антигенами хозяина (микроорганизмы не распознаются как чужеродные);

- перекрестные реакции - образовавшиеся на антигены микроорганизмов антитела вступают в контакт с антигенами хозяина и могут вызывать иммунологический процесс (например: гемолитический стрептококк обладает перекрестнореагирующими антигенами с антигенами миокарда и почечных клубочков; вирус кори имеет перекрестнореагирующие антигены к белку миелину, поэтому иммунная реакция способствует демиелинизации нервных волокон и развитию рассеянного склероза).

Антигены микроорганизмов в зависимости от систематического положения:

1. Видоспецифические - антигены одного вида микроорганизмов.

2. Группоспецифические - антигены одной группы в пределах вида (подразделяют микроорганизмы на серогруппы ).

3. Типоспецифические - антигены одного типа (варианта) в пределах вида (подразделяют микроорганизмы на серовары/серотипы ).

Для того чтобы спровоцировать иммунный ответ, антиген должен обладать свойством иммуногена, как об этом уже упоминалось. С другой стороны, организму (реципиенту) необходимо обладать способностью воспринимать сигнал и включать иммунные механизмы. Например, при анализе генетического контроля иммунного ответа выявлены линии мышей и морских свинок, одни из которых отвечают на определенный антиген, а другие остаются ареактивными к тому же антигену. Иными словами, антиген в качестве иммуногена проявляется тогда, когда иммунная система конкретного организма способна к адекватному ответу. Иммуногенность антигена определяется следующими свойствами: чужеродностью для организма, молекулярной массой, химическим строением.

Чужеродность. Для того чтобы молекула выступила в качестве иммуногена, она должна быть распознана иммунной системой как «не своя». Это качество антигена кажется очевидным. При этом не все чужеродные молекулы способны вызвать иммунный ответ равной силы. Хорошо известно, что филогенетическая удаленность донора антигена от реципиента и выраженность иммунного ответа находятся в прямой зависимости.
Например, синтез антител к бычьему сывороточному альбумину легче вызвать у кролика, чем у козы. Кролики относятся к отряду зайцеобразных, а козы и быки включены в другой отряд - парнокопытных. В зависимости от особенностей антигена его иммуногенные свойства будут проявляться и на внутривидовом (индивидуальном) уровне. Получение антител к антигенам гистосовместимости или аллотипам иммуноглобулинов - обычный прием исследовательской работы. В то же время антитела к альбумину при внутривидовой иммунизации не образуются.

Изменение конформации собственных белков (например, при тепловой или химической денатурации) делает такие белки чужеродными для собственного организма, который реагирует на них синтезом антител. Развитие реакции к собственным, нативным антигенам известно при аутоиммунных заболеваниях. Однако такая патологическая реактивность связана с нарушениями в самой иммунной системе и не связана с какими-либо изменениями в аутоантигенах. Молекулярная масса. Экспериментаторам хорошо известна зависимость между размерами антигена и силой иммунного ответа.
Все корпускулярные антигены (бактерии, гетерологичные эритроциты) хорошие иммуногены. Для белковых антигенов иммунный ответ будет тем сильнее, чем больше его молекулярная масса. При всех прочих равных условиях большая молекулярная масса антигена обеспечивает большую иммуногенность. Вирус табачной мозаики - наиболее сильный иммуноген в отличие от рибонуклеазы - слабого иммуногена.

Химические особенности. Чужеродность и значительная молекулярная масса не являются достаточным условием для проявления иммуногенности антигена. Синтетический поли-Ь-лизин с высокой молекулярной массой не является иммуногеном. В то же время сополимеры, построенные из двух аминокислот и более, приобретают способность индуцировать иммунный ответ. Иммуногенность значительно усиливается, если в структуру сополимера включены ароматические аминокислоты. Так, например, сополимер двух аминокислот лизина и глутаминовой кислоты приобретает иммуногенность при минимальной молекулярной массе 30 - 40 кДа. Добавление в сополимер тирозина снижает минимальную молекулярную массу, достаточную для проявления иммуногенности, до 10 - 20 кДа.
При включении еще одной ароматической аминокислоты - фенилаланина иммуногенность сополимера проявляется при молекурной массе, равной всего 4 кДа. К этой же категории явлений относится увеличение иммуногенности очень слабого антигена желатины добавлением небольшого количества тирозина.

Еще одна особенность, связанная с химическим строением полимерных молекул: антиген распознается Т-хелперами на поверхности антигенпрезентирующей клетки, где он экспрессируется в иммуногенной форме после переработки гидролитическими ферментами. Если ферменты лизосом не способны деградировать макромолекулы, то они остаются неиммуногенными и слабоиммуногенными. Ферменты макрофагов разрушают белки, построенные из L-аминокислот, и остаются инертными к D-изомерам, что и является причиной крайне низкой иммуногенности синтетических полимеров, построенных из D-аминокислот.

Требования к организму
Наличие у антигенов перечисленных выше свойств (чужеродность, достаточная молекулярная масса, особенности химической структуры) не всегда является гарантом развития полноценного иммунного ответа.
Это зависит от иммунизируемого организма, его индивидуальной генетической характеристики - генотипа.

Различные инбредные линии мышей неодинаково отвечают на один и тот же антиген. Так, мыши, имеющие гаплотип главного комплекса гистосовместимости (МНС) Н-2Ь, развивают крайне слабый ответ на введение синтетического сополимера: полигистидин-полиглутаминовая кислота-полиаланин-полилизин [(H,G)-A-L]. При этом мыши с гаплотипом Н-2к характеризуются высоким ответом. В силе иммунного ответа на другой сополимер [(T,G)-A-L], который отличается от предыдущего всего на одну аминокислоту, отмечается реверсия: линия с гаплотипом Н-2Ь развивает сильный ответ, линия Н-2к - слабый. В основе столь тонкой дифференцировки антигена лежат различия по генам иммунного ответа (Ir-генам), локализованным в МНС.

Иммуногенность - потенциальная способность антигена вызывать иммунный ответ вне зависимости от его иммунной специфичности. Степень иммуногенности зависит от трех групп факторов: молекулярных особенностей антигена,кинетики антигена в организме,реактивности макроорганизма.

На степень иммуногенности вещества влияют следующие факторы:

  • Природа антигена. Высокой иммуногенностью обладают белки и углеводы. Нуклеиновые кислоты, липиды и другие органические вещества зачастую слабоиммуногенны и могут выступать в роли эффективных антигенов только в составе комплексных соединений.
  • Размер молекулы вещества. С повышением молекулярной массы растёт иммуногенность. Для белков пороговый размер молекулы, при котором появляется иммуногенность, видимо, связан с появлением α-спиральной структуры. Молекулярная масса антигена влияет не только на формирование определённой вторичной структуры белка, но и на количество эпитопов и их разнообразие, что повышает валентность антигена и также влияет на степень его иммуногенности.
  • Жёсткость структуры молекулы антигена, то есть способность сохранять определённую конфигурацию, увеличивает иммуногенность.
  • Принадлежность антигенов к классам полимеров, свойственным высшим животным, увеличивает их иммуногенность для последних. В частности, полипептиды, состоящие из не свойственных позвоночным D-аминокислот, слабо иммуногенны для них. Предполагается, что это может быть связано с трудностью деградации этих веществ из-за отсутствия необходимых ферментов.

Литература

Ссылки

Иммуногенность антигенов

Иммуногенность антигена — это способность в организме иммунизированного животного образования антител. Иммуногенность как биологическое свойство антигена является более сложным, чем антигенность. Антигенности того или иного вещества недостаточно, чтобы вызвать образование антител. В качестве примера можно привести гаптены, которые приобретают иммуногенность только после конъюгирования с соответствующим носителем.

Иммуногенность веществ сильно зависит от их молекулярной массы: чем выше молекулярная масса, тем выше иммуногенность. Отсюда вытекает важное практическое следствие — сшивка биополимеров между собой и другими белками повышает иммуногенность. Зависимость иммуногенности от молекулярной массы, по-видимому, определяется следующими причинами: во-первых, увеличение времени пребывания антигена в организме при возрастании его молекулярной массы; во-вторых, у высокомолекулярных антигеноа существенно возрастает способность взаимодействовать с макрофагами, в-третьих, с увеличением молекулярной массы в антигене увеличивается как общее количество антигенных детерминант, так и их разнообразие, что повышает эффективность взаимодействия] антигенов как с B-, так и с T-лимфоцитами.

Плотность расположения и количество антигенных детерминант на поверхности антигенов также имеет важное значение: по мере увеличения этих показателей иммуногенность в начале растет, а затем начинает уменьшаться. Так, например, для динитрофенильной гаптеновой группы было показано, что из конъюгатов, содержащих 3, 16 и 28 групп на молекулу бычьего альбумина, максимальной антигенностью обладал конъюгат, содержащий 16 молекул гаптена.

Одной из причин такого эффекта, по-видимому, является сложность межклеточной кооперации. В частности, показано, что в иммунном ответе против антигенов, имеющих повторяющиеся антигенные детерминанты, участвуют только В-лимфоциты; такие антигены называются независимыми . Для этих антигенов, например полимеров. D-аминокислот, также характерно снижение скорости метаболизма в организме.

Очень важным является понятие "чужеродность" иммуногена. Установлено, что чем более антиген отличается по своей структуре от гомологичного антигена иммунизируемого животного, тем выше его иммуногенность. Например, инсулины человека и многих видов животных имеют близкую первичную структуру и поэтому для них инсулин человека малоиммуногенен. Однако между инсулином человека и морской свинки имеются достаточные отличия, что позволяет использовать этих животных как продуцентов соответствующих антисывороток.

2. Иммуногенность

Однако это правило нельзя считать абсолютным. Так, например, гормон тироксин имеет одинаковую структуру у всех животных, тем не менее, будучи конъюгированным с подходящим белком, он становится хорошим иммуногеном. В данном случае антигенная детерминанта состоит не только из гормона, но и "ножки" и части белковой глобулы, что в целом создает "чужеродную" структуру. Именно на этом принципе основано получение антител против различных низкомолекулярных физиологически активных веществ.

"Чужеродность" зависит от генетических особенностей иммунизируемого животного, поэтому часто иммуногенность связывают с генетической чужеродностью антигена. Из "чужеродности" следует, что иммуногенность — это не абсолютное свойство антигена по отношению к данному виду животного, а иногда даже к индивидуальному организму. Необходимо иметь в виду, что иммунная система организма сама находится под жестким генетическим контролем, который определяет как биологическую активность различных участников иммунного процесса, так и многообразие специфичностей рецепторов, а значит, и специфичностей антител. Именно видовая и индивидуальная вариабельность организмов требует внимательного выбора вида животного. Чем менее " чужеродный" антиген, тем большее количество животных следует брать для иммунизации. Так, например, для получения антисывороток против инсулина наиболее иммунореактивными являются морские свинки, при этом в среднем только одна из семи морских свинок дает удовлетворительную для целей анализа антисыворотку. Даже в случае получения антисывороток против достаточно "чужеродных" антигенов необходима большая группа животных, так как в этом случае нивелируются индивидуальные различия. Смесь антисывороток против данного антигена от разных животных одной группы называют пулом.

Из лабораторных животных чаще всего берут для иммунизации кроликов, морских свинок или мышей в зависимости от количества имеющегося антигена, доступности животного и т.д. Возможность использования группы лабораторных животных позволяет решить проблему отбора из них наиболее иммунореактивных. Иммунизировать удобнее самцов, так как у них иммуногенный ответ менее подвержен влиянию гормональных циклов. Для получения антител против вирусов эффективными оказались куры, у которых антитела накапливаются в яйцах. Большие количества антисывороток получают иммунизацией крупных животных: козлов, баранов, ослов, лошадей.

Для получения специфических антисывороток важное значение имеет гомогенность антигена. Это обусловлено тем, что примеси чужеродных антигенов могут обладать большей иммуногенностью, чем основной антиген, в результате чего, несмотря на небольшое количество примеси, против нее может образоваться достаточное количество антител. Так, например, вирусные антигены, выделенные из культуры ткани животных, содержат примесь тканевых антигенов, против которых вырабатываются антитела, дающие ложноположительные реакции в иммунохимическом анализе.

Степень иммунного ответа также зависит от количества введенного антигена. При определенных концентрациях антигена, как высоких, так и низких, наступает торможение гуморального иммунного ответа, называемое толерантностью. Это обусловливает необходимость выбора оптимальной дозы в каждом конкретном случае, с учетом чистоты препарата и его иммуногенности. Доза иммуногена для одной инъекции кролику или морской свинке составляет в среднем 100-300 мкг на 2 кг массы. Доза, необходимая для крупных животных, не увеличивается пропорционально их массе. Так, для овец достаточна доза, равная 0,25-5 мг иммуногена на инъекцию, для осла — 0,5-10 мг. В случае использования в качестве иммуногена конъюгата гаптенноситель доза зависит от молекулярной массы конъюгата.

Способ введения антигена и периодичность введения влияют на иммунологическую активность антисывороток. Так как иммунный ответ формируется в организме постепенно, принято различать первичный ответ и вторичный ответ . Первичные и вторичные антисыворотки отличаются по составу антител и их специфичности. Обычно высокоактивные антисыворотки получают после нескольких циклов иммунизации. Однако очень длительные иммунизации могут привести к снижению специфичности из-за постепенного увеличения титра антител к примесным антигенам.

В процессе иммунизации изменяется также аффинность и соотношение между различными фракциями антител. Такая вариабельность качества антисывороток по специфичности антител, их физико-химическим свойствам и концентрации является следствием популяционной природы иммунного ответа. В связи с этими обстоятельствами на практике необходимо вести непрерывный контроль за качеством получаемых антисывороток.

Антигены — виды и свойства. Иммуногенность

Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

Существует два основных вида антигенов: экзогенные и эндогенные (аутологичные). Экзогенные антигены попадают в организм из внешней среды. Среди них различают инфекционные и неинфекционные АГ.

Инфекционные антигены — это антигены бактерий, вирусов, грибов, простейших.

Известны следующие разновидности бактериальных антигенов:

— группоспецифические (встречаются у разных видов одного рода или семейства);

— видоспецифические (у различных представителей одного вида);

— типоспецифические (определяют серологические варианты — серовары, антигеновары внутри одного вида).

Антигенность

Под антигенностью понимают потенциальную способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген должен выступать специфическим раздражителем по отношению к иммунокомпетентным клеткам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее небольшим участком, который получил название «антигенная детерминанта», или «эпитоп».

Чужеродность является обязательным условием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объекты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как иммунокомпетентные клетки не способны напрямую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

Иммуногенность - потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфическую защитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы:

1. Молекулярные особенности антигена;

2. Клиренс антигена в организме;

3. Реактивность макроорганизма.

К первой группе факторов отнесены природа, химический состав, молекулярный вес, структура и некоторые другие характеристики.

Иммуногенность в значительной степени зависит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказывает влияние пространственная структура антигена. Оказалась также существенной стерическая стабильность молекулы антигена.

Что Такое иммуногенность- Значение Слова иммуногенность

Еще одним важным условием иммуногенности является растворимость антигена.

Вторая группа факторов связана с динамикой поступления антигена в организм и его выведения. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ.

Третья группа объединяет факторы, определяющие зависимость иммуногенности от состояния макроорганизма. В этой связи на первый план выступают наследственные факторы.

Специфичностью называют способность антигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обусловлено особенностями формирования иммунного ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раздражение всегда отвечает поликлональными иммунным ответом.

Антигены бактериальной клетки

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены. Жгутиковые, или Н-антигены, локализуются в локомоторном аппарате бактерий - их жгутиках. Они представляют собой эпитопы сократительного белка флагеллина. При нагревании флагеллин денатурирует, и Н-антиген теряет свою специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют ЛПС. О-антиген проявляет термостабильные свойства - он не разрушается при длительном кипячении. Однако соматический антиген подвержен действию альдегидов (например, формалина) и спиртов, которые нарушают его структуру.

Капсульные, или К-антигены, располагаются на поверхности клеточной стенки. Встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты). В то же время у бациллы сибирской язвы этот антиген построен из полипептидных цепей. По чувствительности к нагреванию различают три типа К-антигена: А, В, и L. Наибольшая термостабильность характерна для типа А, он не денатурирует даже при длительном кипячении. Тип В выдерживает непродолжительное нагревание (около 1 часа) до 60 оС. Тип L быстро разрушается при этой температуре. Поэтому частичное удаление К-антигена возможно путем длительного кипячения бактериальной культуры.

На поверхности возбудителя брюшного тифа и других энтеробактерий, которые обладают высокой вирулентностью, можно обнаружить особый вариант капсульного антигена. Он получил название антигена вирулентности, или Vi-антигена. Обнаружение этого антигена или специфичных к нему антител имеет большое диагностическое значение.

Антигенными свойствами обладают также бактериальные белковые токсины, ферменты и некоторые другие белки, которые секретируются бактериями в окружающую среду (например, туберкулин). При взаимодействии со специфическими антителами токсины, ферменты и другие биологически активные молекулы бактериального происхождения теряют свою активность. Столбнячный, дифтерийный и ботулинический токсины относятся к числу сильных полноценных антигенов, поэтому их используют для получения анатоксинов для вакцинации людей.

В антигенном составе некоторых бактерий выделяется группа антигенов с сильно выраженной иммуногенностью, чья биологическая активность играет ключевую роль в формировании патогенности возбудителя. Связывание таких антигенов специфическими антителами практически полностью инактивирует вирулентные свойства микроорганизма и обеспечивает иммунитет к нему. Описываемые антигены получили название протективных. Впервые протективный антиген был обнаружен в гнойном отделяемом карбункула, вызванного бациллой сибирской язвы. Это вещество является субъединицей белкового токсина, которая ответственна за активацию других, собственно вирулентных субъединиц - так называемого отечного и летального факторов.

Антигены грибов

Дрожжевые клетки Candida albicans содержат полисахарид клеточной стенки — маннан, цитоплазматические и ядерные белки. Среди них выявлено более 80 антигенов. Для иммунологических тестов используют экстракты цельных клеток, очищенный маннан или цитоплазматические белки. Антигены вызывают немедленные (антитела IgM, IgG, IgA, IgE классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антитела также выявляются у некоторых здоровых лиц. В крови больных слизисто-кожным кандидозом находят антигены кандид.

Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

Антигены вирусов

У большинства вирусов имеются суперкапсидные — поверхностные оболочечные, белковые и гликопротеидные АГ (например, гемагглютинин и нейраминидаза вируса гриппа), капсидные — оболочечные и нуклеопротеидные (сердцевинные) АГ.

Протективные антигены

Это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторной инфекции данным возбудителем. Определение вирусных антигенов в крови и других биологических жидкостях широко используется для диагностики вирусных инфекций. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин. По строению они вариабельны даже у одного вида вирусов.

Пути проникновения инфекционных антигенов в организм разнообразны:

— через поврежденную и иногда неповрежденную кожу;
— через слизистые оболочки носа, рта, желудочно-кишечного тракта, мочеполовых путей.

Пути распространения антигенов — кровь, лимфа, а также по поверхности слизистых оболочек.

Протективные антиген

Cтраница 1

Протективные антигены или их фрагменты, используемые для конструирования молекулярных вакцин, могут быть синтезированы искусственно.  

Протективные антигены — это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.  

Все протективные антигены, используемые в убитых вакцинах, должны обладать природной высокой антигенностью, обеспечивая мощную выработку антител или накопление специфических Т — клеток. В этом случае понятия антигенности и иммуногенности практически совпадают.  

Заключением протективных антигенов в микрокапсулы из полимеров и липидов (липосомы), обеспечивающих соответствующую динамику подачи антигена и активацию фагоцитов.  

Есть предложения вместо протективных антигенов использовать участки ДНК возбудителя, к которому ковалентно присоединяются адгезины реовирусов.  

В связи с целенаправленным выделением протективных антигенов и их дальнейшей очисткой молекулярные вакцины, созданные на базе очищенных протективных антигенов, обладают довольно низкой реактогенностью, токсичностью и аллер-гизируюшей активностью.  

Как правило, в качестве таких протективных антигенов выступают различные факторы патогенное возбудителя. Именно при блокировании их функций патогенный организм не способен реализовать свою патоген-ность, не может противостоять системе иммунитета и погибает. Однако нельзя исключать, что в качестве протективных антигенов могут выступить иные жизненно важные компоненты клеток возбудителя.

Условия появления иммуногенности

Основным действующим началом убитых вакцин служат тоже протективные антигены, которые находятся в структуре микробных клеток или вирусов. Причем вакцины этого типа вводят, как правило, только парэнтерально: подкожно, внутрикожно, внутримышечно.  

Такое трансгенное растение синтезирует в своем составе протективные антигены возбудителей. Эти антигены можно выделить, очистить и использовать как обычные молекулярные вакцины.  

Этот вид вакцин получил свое название благодаря тому, что протективные антигены используются в них в виде отдельных, как правило, растворимых молекул. Отсюда и возникло предложение называть эти препараты химическими вакцинами.  

Основная субстанция этого вида вакцин — чистая ДНК возбудителя, кодирующая эпитопы протективных антигенов. В последовательность ее оснований обычно включается подходящий промотор. Такая структура ДНК может проникать в клетку хозяина и встраиваться в ее геном.  

В эту группу вакцинных препаратов относят молекулярные конструкции, у которых эпитопы протективных антигенов встроены в комплекс молекул гистосовместимости. Отмечается, что в таком виде вакцинные препараты способны индуцировать сильный клеточный иммунный ответ.  

В эту же группу можно отнести вакцинные препараты, представляющие собой конъюгаты протективных антигенов (вернее, их фрагментов) с молекулами, обеспечивающими доставку и их присоединение к продуктам генов МНС. В качестве таких лигандных молекул могут быть использованы монокло-нальные антитела к молекулам МНС I и II классов, а также искусственно синтезированные пептиды, избирательно взаимодействующие с молекулами МНС.  

В большинстве случаев (но не всегда) из вирулентных штаммов возбудителей выделяются более активные протективные антигены, и в большем количестве, чем из слабовирулентных.  

Теоретической посылкой для создания таких вакцин явилось положение о том, что фрагменты протективных антигенов приобретают иммуногенность только после процессинга и встраивания в молекулы МНС. Поэтому, в качестве вакцины и предлагается такая, уже готовая конструкция.  

Страницы:      1    2

  • Алергія: етіологія, патогенез, класифікація алергічних реакціїй і їх характеристика.
  • Анемии вследствие кровопотерь. Виды. Этиология. Патогенез. Гематологическая характеристика.
  • Антигенная структура бактериальной клетки: О -, Vi -, К -, Н – антигены. Групповые и видовые антигены микробов.
  • Антигенная структура бактерий. Групповые, ввдовые, типовые антигены. Перекрестнореагируюшие антигены. Антигенная формула.
  • Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение.

    Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью.

    Антигенность . Под антигенностью понимают потенциаль­ную способность молекулы антигена акти­вировать компоненты иммунной системы и специфически взаимодействовать с фактора­ми иммунитета (антитела, клон эффекторных лимфоцитов). Иными словами, антиген дол­жен выступать специфическим раздражителем по отношению к иммунокомпетентным клет­кам. При этом взаимодействие компоненты иммунной системы происходит не со всей молекулой одновременно, а только с ее не­большим участком, который получил название «антигенная детерминанта», или «эпитоп».

    Чужеродность является обязательным усло­вием для реализации антигенности. По этому критерию система приобретенного иммунитета дифференцирует потенциально опасные объ­екты биологического мира, синтезированные с чужеродной генетической матрицы. Понятие «чужеродность» относительное, так как имму-нокомпетентные клетки не способны напря­мую анализировать чужеродный генетический код. Они воспринимают лишь опосредованную информацию, которая, как в зеркале, отражена в молекулярной структуре вещества.

    Иммуногенность - потенциальная способ­ность антигена вызывать по отношению к себе в макроорганизме специфическую за­щитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: 1. Молекулярные особенности антигена; 2. Клиренс антигена в организме; 3. Реактивность макроорганизма.

    К первой группе факторов отнесены природа, химический состав, молекулярный вес, струк­тура и некоторые другие характеристики.

    Иммуногенность в значительной степени за­висит от природы антигена. Важна также оптическая изомерия аминокислот, составляющих молекулу белка. Большое значение имеет размер и молекулярная масса антигена. На степень иммуногенности также оказыва­ет влияние пространственная структура анти­гена. Оказалась также существенной стерическая стабильность молекулы антигена. Еще одним важным условием иммуно­генности является растворимость антигена.

    Вторая группа факторов связана с динамикой поступления антигена в организм и его выведе­ния. Так, хорошо известна зависимость иммуногенности антигена от способа его введения. На иммунный ответ влияет количество пос­тупающего антигена: чем его больше, тем более выражен иммунный ответ.

    Третья группа объединяет факторы , опреде­ляющие зависимость иммуногенности от со­стояния макроорганизма. В этой связи на пер­вый план выступают наследственные факторы.

    Специфичностью называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Это свойство обуслов­лено особенностями формирования иммунно­го ответа - необходима комплементарность рецепторного аппарата иммунокомпетентных клеток к конкретной антигенной детерминанте. Поэтому специфичность антигена во многом определяется свойствами составляющих его эпитопов. Однако при этом следует учитывать условность границ эпитопов, их структурное разнообразие и гетерогенность клонов антигенреактивных лимфоцитовой специфичности. В результате этого организм на антигенное раз­дражение всегда отвечает поликлональными им­мунным ответом.